RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of ‘alternative NHEJ’
نویسندگان
چکیده
DNA double-stranded breaks (DSBs) can be repaired by several mechanisms, including classical NHEJ (c-NHEJ) and a poorly defined, error-prone process termed alternative NHEJ (a-NHEJ). How cells choose between these alternatives to join physiologic DSBs remains unknown. Here, we show that deletion of RAG2's C-terminus allows a-NHEJ to repair RAG-mediated DSBs in developing lymphocytes from both c-NHEJ-proficient and c-NHEJ-deficient mice, demonstrating that the V(D)J recombinase influences repair pathway choice in vivo. Analysis of V(D)J junctions revealed that, contrary to expectation, junctional characteristics alone do not reliably distinguish between a-NHEJ and c-NHEJ. These data suggest that a-NHEJ is not necessarily mutagenic, and may be more prevalent than previously appreciated. Whole genome sequencing of a lymphoma arising in a p53(-/-) mouse bearing a C-terminal RAG2 truncation reveals evidence of a-NHEJ and also of aberrant recognition of DNA sequences resembling RAG recognition sites.
منابع مشابه
Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells
The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ con...
متن کاملNHEJ and Other Repair Factors in V(D)J Recombination
V(D)J recombination requires the formation and resolution of programmed DNA double-strand breaks (DSBs) to effect the gene rearrangements necessary for immunoglobulin and T cell receptor formation. Improper repair of DNA DSBs can lead to deleterious consequences for the cell, including loss of genetic information, cell death, and formation of chromosomal translocations. The classical nonhomolog...
متن کاملAlternative pathways for the repair of RAG-induced DNA breaks.
RAG1 and RAG2 cleave DNA to generate blunt signal ends and hairpin coding ends at antigen receptor loci in lymphoid cells. During V(D)J recombination, repair of these RAG-generated double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway contributes substantially to the antigen receptor diversity necessary for immune system function, although recent evidence also supports the...
متن کاملAlternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination.
Classical nonhomologous end-joining (C-NHEJ) and alternative end-joining (A-EJ) are the main DNA double-strand break (DSB) repair pathways when a sister chromatid is not available. However, it is not clear how one pathway is chosen over the other to process a given DSB. To address this question, we studied in mouse splenic B cells and CH12F3 cells how C-NHEJ and A-EJ repair DSBs initiated by th...
متن کاملDNA double-strand break repair pathway choice in Dictyostelium.
DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells ar...
متن کامل